例如:"lncRNA", "apoptosis", "WRKY"

Group I metabotropic glutamate receptor activation induces TRPC6-dependent calcium influx and RhoA activation in cultured human kidney podocytes.

Biochem. Biophys. Res. Commun.2019 Apr 02;511(2):374-380. Epub 2019 Feb 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Researches have shown that mice lacking the metabotropic glutamate receptor 1 (mGluR) showed albuminuria, remodeling of F-actin, with loss of stress fibers. Selective group I mGluRs agonist (S)-3,5-dihydroxyphenylglycine (DHPG) attenuated albuminuria in several rodent models of nephrotic syndrome. However, the molecular mechanism is obscure. Using a human podocyte cell line, we here investigated the molecular mechanisms of group I mGluRs-induced calcium influx and the formation of stress fibers. Our data showed that group I mGluRs activation by DHPG induced a significant calcium influx, and promoted cytoskeletal stress fiber formation and focal adhesions in podocytes. Pre-incubating podocytes with non-selective inhibitor of transient receptor potential channels (TRPC), or the knockdown of TRPC6 attenuated the calcium influx and the stress fiber formation induced by DHPG. Further, DHPG resulted in an increase of active RhoA expression. However, the knockdown of RhoA by siRNA abolished the DHPG-induced increase in stress fibers. Additionally, nonselective inhibitors of TRPC or TRPC6 knockdown clearly inhibited RhoA activation induced by DHPG, as assessed by Glutathione-S-transferase pull-down assay followed by Western blotting. Taken together, our findings suggest TRPC6 regulates actin stress fiber formation and focal adhesions via the RhoA pathway in response to group I mGluRs activation. Our data can potentially explain the mechanism of protective action of group I mGluRs in glomerular podocyte injury.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读