例如:"lncRNA", "apoptosis", "WRKY"

Targeting the TLK1/NEK1 DDR axis with Thioridazine suppresses outgrowth of androgen independent prostate tumors.

Int. J. Cancer. 2019 Aug 15;145(4):1055-1067. doi:10.1002/ijc.32200. Epub 2019 Feb 25
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Standard therapy for advanced Prostate Cancer (PCa) consists of antiandrogens, which provide respite from disease progression, but ultimately fail resulting in the incurable phase of the disease: mCRPC. Targeting PCa cells before their progression to mCRPC would greatly improve the outcome. Combination therapy targeting the DNA Damage Response (DDR) has been limited by general toxicity, and a goal of clinical trials is how to target the DDR more specifically. We now show that androgen deprivation therapy (ADT) of LNCaP cells results in increased expression of TLK1B, a key kinase upstream of NEK1 and ATR and mediating the DDR that typically results in a temporary cell cycle arrest of androgen responsive PCa cells. Following DNA damage, addition of the TLK specific inhibitor, thioridazine (THD), impairs ATR and Chk1 activation, establishing the existence of a ADT > TLK1 > NEK1 > ATR > Chk1, DDR pathway, while its abrogation leads to apoptosis. Treatment with THD suppressed the outgrowth of androgen-independent (AI) colonies of LNCaP and TRAMP-C2 cells cultured with bicalutamide. Moreover, THD significantly inhibited the growth of several PCa cells in vitro (including AI lines). Administration of THD or bicalutamide was not effective at inhibiting long-term tumor growth of LNCaP xenografts. In contrast, combination therapy remarkably inhibited tumor growth via bypass of the DDR. Moreover, xenografts of LNCaP cells overexpressing a NEK1-T141A mutant were durably suppressed with bicalutamide. Collectively, these results suggest that targeting the TLK1/NEK1 axis might be a novel therapy for PCa in combination with standard of care (ADT). © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读