例如:"lncRNA", "apoptosis", "WRKY"

L-PGDS-derived PGD2 attenuates acute lung injury by enhancing endothelial barrier formation.

J. Pathol.2019 Jul;248(3):280-290. doi:10.1002/path.5253. Epub 2019 Mar 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Acute lung injury (ALI) is caused by various stimuli such as acid aspiration and infection, resulting in severe clinical outcomes with high mortality. Prostaglandin D2 (PGD2 ) is a lipid mediator produced in the lungs of patients with ALI. There are two prostaglandin D synthases (PGDS), namely, lipocalin-type PGDS (L-PGDS) and hematopoietic PGDS (H-PGDS). We previously reported the anti-inflammatory role of H-PGDS-derived PGD2 in an endotoxin-induced murine ALI model. Therefore, in this study, we investigated the role of L-PGDS-derived PGD2 in ALI in comparison to H-PGDS-derived PGD2 . Intratracheal administration of HCl caused lung inflammation accompanied by tissue edema and neutrophil accumulation in mouse lungs. The deficiency of both L-PGDS and H-PGDS exacerbated HCl-induced lung dysfunction to a similar extent. Furthermore, a detailed investigation revealed that L-PGDS-derived PGD2 inhibited lung edema, while H-PGDS-derived PGD2 inhibited neutrophil infiltration. Immunostaining showed that inflamed endothelial/epithelial cells express L-PGDS, while macrophages and neutrophils express H-PGDS. Hematopoietic reconstitution with WT bone marrow did not rescue the exacerbated lung edema in L-PGDS deficient mice, indicating the importance of nonhematopoietic endothelial/epithelial cell-expressing L-PGDS for protection against ALI. A modified Miles assay showed that L-PGDS deficiency accelerated vascular hyper-permeability in the inflamed lung, which was suppressed by the stimulation of D prostanoid (DP) receptor, a PGD2 receptor. In vitro, DP agonism enhanced the barrier function of endothelial cells but not epithelial cells. Taken together, our results suggest that in the HCl-induced murine ALI model PGD2 was produced locally by inflamed endothelial and epithelial L-PGDS and this enhanced the endothelial barrier through the DP receptor. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读