例如:"lncRNA", "apoptosis", "WRKY"

Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection.

Dev. Comp. Immunol.2019 Jun;95:10-18. Epub 2019 Feb 04
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Drosophila melanogaster possesses a sophisticated and effective immune system composed of humoral and cellular immune responses, and production of antimicrobial peptides (AMPs) is an important defense mechanism. Expression of AMPs is regulated by the Toll and IMD (immune deficiency) pathways. Production of AMPs can be systemic in the fat body or a local event in the midgut and epithelium. So far, most studies focus on systemic septic infection in adult flies and little is known about AMP gene activation after ingestion of killed bacteria. In this study, we investigated activation of AMP genes in the wild-type w1118, MyD88 and Imd mutant flies after ingestion of heat-killed Escherichia coli and Staphylococcus aureus. We showed that ingestion of E. coli activated most AMP genes, including drosomycin and diptericin, in the first to third instar larvae and pupae, while ingestion of S. aureus induced only some AMP genes in some larval stages or in pupae. In adult flies, ingestion of killed bacteria activated AMP genes differently in males and females. Interestingly, ingestion of killed E. coli and S. aureus in females conferred resistance to septic infection by both live pathogenic Enterococcus faecalis and Pseudomonas aeruginosa, and ingestion of E. coli in males conferred resistance to P. aeruginosa infection. Our results indicated that E. coli and S. aureus can activate both the Toll and IMD pathways, and systemic and local immune responses work together to provide Drosophila more effective protection against infection.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读