例如:"lncRNA", "apoptosis", "WRKY"

Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry.

Genet Med. 2019 Sep;21(9):2145-2150. Epub 2019 Feb 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:Severe hematotoxicity in patients with thiopurine therapy has been associated with genetic polymorphisms in the thiopurine S-methyltransferase (TPMT). While TPMT genetic testing is clinically implemented for dose individualization, alterations in the nudix hydrolase 15 (NUDT15) emerged as independent determinant of thiopurine-related hematotoxicity. Because data for European patients are limited, we investigated the relevance of NUDT15 in Europeans. METHODS:Additionally to TPMT phenotyping/genotyping, we performed in-depth Sanger sequencing analyses of NUDT15 coding region in 107 European patients who developed severe thiopurine-related hematotoxicity as extreme phenotype. Moreover, genotyping for NUDT15 variants in 689 acute lymphoblastic leukemia (ALL) patients was performed. RESULTS:As expected TPMT was the main cause of severe hematotoxicity in 31% of patients, who were either TPMT deficient (10%) or heterozygous carriers of TPMT variants (21%). By comparison, NUDT15 genetic polymorphism was identified in 14 (13%) patients including one novel variant (p.Met1Ile). Six percent of patients with severe toxicity carried variants in both TPMT and NUDT15. Among patients who developed toxicity within 3 months of treatment, 13% were found to be carriers of NUDT15 variants. CONCLUSION:Taken together, NUDT15 and TPMT genetics explain ~50% of severe thiopurine-related hematotoxicity, providing a compelling rationale for additional preemptive testing of NUDT15 genetics not only in Asians, but also in Europeans.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读