例如:"lncRNA", "apoptosis", "WRKY"

Transcriptomic expression profiling identifies ITGBL1, an epithelial to mesenchymal transition (EMT)-associated gene, is a promising recurrence prediction biomarker in colorectal cancer.

Mol. Cancer. 2019 Feb 04;18(1):19
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The current histopathological risk-stratification criteria in colorectal cancer (CRC) patients following a curative surgery remain inadequate. In this study, we undertook a systematic, genomewide, biomarker discovery approach to identify and validate key EMT-associated genes that may facilitate recurrence prediction in CRC. Genomewide RNA expression profiling results from two datasets (GSE17538; N = 173 and GSE41258; N = 307) were used for biomarker discovery. These results were independently validated in two, large, clinical cohorts (testing cohort; N = 201 and validation cohort; N = 468). We performed Gene Set (GSEA) for understanding the function of the candidate markers, and evaluated their correlation with the mesenchymal CMS4 subtype. We identified integrin subunit beta like 1 (ITGBL1) as a promising candidate biomarker, and its high expression associated with poor overall survival (OS) in stage I-IV patients and relapse-free survival (RFS) in stage I-III patients. Subgroup validation in multiple independent patient cohorts confirmed these findings, and demonstrated that high ITGBL1 expression correlated with shorter RFS in stage II patients. We developed a RFS prediction model which robustly predicted RFS (the area under the receiver operating curve (AUROC): 0.74; hazard ratio (HR): 2.72) in CRC patients. ITGBL1 is a promising EMT-associated biomarker for recurrence prediction in CRC patients, which may contribute to improved risk-stratification in CRC.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读