例如:"lncRNA", "apoptosis", "WRKY"

LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6.

Metab. Clin. Exp.2019 May;94:1-8. Epub 2019 Feb 01
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Hepatic lipogenesis dysregulation is essential for the development of non-alcoholic fatty liver disease (NAFLD). Emerging evidence indicates the importance of the involvement of long non-coding RNAs (LncRNAs) in lipogenesis. However, the specific mechanism underlying this process is not clear. OBJECTIVE:This study aimed to investigate the functional implication of LncRNA MEG3 (MEG3) in fatty degeneration of hepatocytes and in the pathogenesis of NAFLD. METHODS:The expression of MEG3 was analysed in in vitro and in vivo models of NAFLD, which were established by free fatty acid (FFA)-challenged HepG2 cells and high-fat diet-fed mice, respectively. Endogenous MEG3 was over-expressed by a specific pcDNA3.1-MEG3 to evaluate the regulatory function of MEG3 on triglyceride (TG)- and lipogenesis-related genes. Bioinformatic analysis was used to predict the target genes and binding sites, and the targeted regulatory relationship was verified with a dual luciferase assay. Finally, the possible pathway that regulates MEG3 was also evaluated. RESULTS:We found that the downregulation of MEG3 in vitro and in vivo models of NAFLD was negatively correlated with lipogenesis-related genes and that overexpression of MEG3 reversed FFA-induced lipid accumulation in HepG2 cells. miR-21 was upregulated in the FFA-challenged HepG2 cells and was physically associated with MEG3 in the process of lipogenesis. Our mechanistic studies demonstrated that MEG3 competitively binds to miR-21 with LRP6, followed by the inhibition of the mTOR pathway, which induces intracellular lipid accumulation. CONCLUSION:Our data are the first to document the working model of MEG3 functions as a potential hepatocyte lipid degeneration suppressor. MEG3 helps to alleviate lipid over-deposition, probably by binding to miR-21 to regulate the expression of LRP6. Our results suggest the potency of MEG3 as a biomarker for NAFLD and as a therapeutic target for treatment.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读