例如:"lncRNA", "apoptosis", "WRKY"

miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signaling in colon cancer.

FASEB J. 2019 Apr;33(4):5411-5424. doi:10.1096/fj.201801798RR. Epub 2019 Jan 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The epithelial-mesenchymal transition (EMT) is crucial for cancer progression. Evidence has shown that miR-22 and miR-214 play a key role in colon cancer progression; however, the underlying mechanism remains to be known. The effects of miR-22 and miR-214 on EMT are contradictory in different cancers, and whether miR-22 and miR-214 are involved in the colon cancer EMT process needs to be elucidated. In this study, we evaluated the exact role and the regulation mechanism of miR-22 and miR-214 in colon cancer. After transfection with miR-22 expression vector, the cell proliferation and migration capacity of HCT116 and RKO cells were significantly suppressed. Also, E-cadherin was increased and vimentin was decreased by miR-22 overexpression. Similar effects were also observed after miR-214 expression vector transfection. Dual-luciferase reporter confirmed that BCL9L is the target gene of both miR-22 and miR-214. Silencing of BCL9L inhibits cell proliferation and migration, and the expression of E-cadherin and vimentin was also altered by BCL9L knockdown, which was consistent with miR-22 or miR-214 transfection. Furthermore, miR-22 and miR-214 inhibited tumor growth in nude mice. Moreover, although the association between BCL9L's lower expression and longer survival time was statistically nonsignificant, a trend existed; further studies in a larger cohort are needed. Collectively, these data suggest that miR-22 and miR-214 inhibit cell proliferation, migration, and EMT of colon cancer, most likely by targeting BCL9L.-Sun, R., Liu, Z., Han, L., Yang, Y., Wu, F., Jiang, Q., Zhang, H., Ma, R., Miao, J., He, K., Wang, X., Zhou, D., Huang, C. miR-22 and miR-214 targeting BCL9L inhibit proliferation, metastasis, and epithelial-mesenchymal transition by down-regulating Wnt signliang in colon cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读