例如:"lncRNA", "apoptosis", "WRKY"

Suppressing UPR-dependent overactivation of FGFR3 signaling ameliorates SLC26A2-deficient chondrodysplasias.

EBioMedicine. 2019 Feb;40:695-709. Epub 2019 Jan 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Mutations in the SLC26A2 gene cause a spectrum of currently incurable human chondrodysplasias. However, genotype-phenotype relationships of SLC26A2-deficient chondrodysplasias are still perplexing and thus stunt therapeutic development. METHODS:To investigate the causative role of SLC26A2 deficiency in chondrodysplasias and confirm its skeleton-specific pathology, we generated and analyzed slc26a2-/- and Col2a1-Cre; slc26a2fl/fl mice. The therapeutic effect of NVP-BGJ398, an FGFR inhibitor, was tested with both explant cultures and timed pregnant females. FINDINGS:Two lethal forms of human SLC26A2-related chondrodysplasias, achondrogenesis type IB (ACG1B) and atelosteogenesis type II (AO2), are phenocopied by slc26a2-/- mice. Unexpectedly, slc26a2-/- chondrocytes are defective for collagen secretion, exhibiting intracellular retention and compromised extracellular deposition of ColII and ColIX. As a consequence, the ATF6 arm of the unfolded protein response (UPR) is preferentially triggered to overactivate FGFR3 signaling by inducing excessive FGFR3 in slc26a2-/- chondrocytes. Consistently, suppressing FGFR3 signaling by blocking either FGFR3 or phosphorylation of the downstream effector favors the recovery of slc26a2-/- cartilage cultures from impaired growth and unbalanced cell proliferation and apoptosis. Moreover, administration of an FGFR inhibitor to pregnant females shows therapeutic effects on pathological features in slc26a2-/- newborns. Finally, we confirm the skeleton-specific lethality and pathology of global SLC26A2 deletion through analyzing the Col2a1-Cre; slc26a2fl/fl mouse line. INTERPRETATION:Our study unveils a previously unrecognized pathogenic mechanism underlying ACG1B and AO2, and supports suppression of FGFR3 signaling as a promising therapeutic approach for SLC26A2-related chondrodysplasias. FUND: This work was supported by National Natural Science Foundation of China (81871743, 81730065 and 81772377).

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读