例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus.

Life Sci.2019 May 01;224:67-75. Epub 2019 Jan 23
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Type 2 diabetes mellitus (T2DM) is a progressive disease, accompanied by increased insulin resistance and deteriorating β-cell function. Previous studies have revealed that microRNA (miRNA) plays a crucial role in the treatment of T2DM. Hence, we aim to investigate the role of microRNA-125b-5p (miR-125b-5p) in pancreatic β-cell function and insulin sensitivity of mice with T2DM with the involvement of Dishevelled antagonist Dapper1 (DACT1) and the c-Jun NH2-terminal kinases (JNK) signaling pathway. Firstly, a mouse model of T2DM was established by administering a high-fat diet plus low dosage of streptozotocin, and function of pancreatic β-cell and insulin sensitivity in the normal and T2DM mice were detected. Then, the pancreatic β-cells were collected from pancreatic islet tissues and treated with different mimics, inhibitors and siRNAs. After that, the relationship among miR-125b-5p, DACT1, and the JNK signaling-related factors in T2DM mice was determined. Finally, cell proliferation and apoptosis were determined. Mice with T2DM had lower pancreatic β-cell function and insulin sensitivity, as well as diminished expression of miR-125b-5p but enhanced expressions of DACT1, JNK and c-Jun. miR-125b-5p inhibited DACT1 expression and the activation of the JNK signaling pathway, as well as restrained cell proliferation and promoted cell apoptosis. The current results suggest that up-regulated miR-125b-5p promotes insulin sensitivity and enhances pancreatic β-cell function through inhibiting the JNK signaling pathway by negatively mediating DACT1.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读