[No authors listed]
Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |