[No authors listed]
Various miRNAs are dysregulated during initiation and progression of pulmonary fibrosis. However, their function remains limited in silicosis. Here, we observed that miR-125a-3p was downregulated in silica-induced fibrotic murine lung tissues. Ectopic miR-125a-3p expression with chemotherapy attenuated silica-induced pulmonary fibrosis. Further in vitro experiments revealed that TGF-β1 effectively decreased miR-125a-3p expression in fibroblast lines (NIH/3T3 and MRC-5). Overexpression of miR-125a-3p blocked fibroblast activation stimulated by TGF-β1. Mechanistically, miR-125a-3p could bind to the 3'-untranslated region of Fyn and inhibit its expression in both mRNA and protein levels, thus causing inactivation of Fyn downstream effector Fyn and as opposed to miR-125a-3p expression, were elevated in silica-induced fibrotic murine lung tissues and TGF-β1-treated fibroblast lines. Furthermore, Fyn knockdown or suppression effectively attenuated fibroblast activation and ECM production. Taken together, miR-125a-3p is involved in fibrosis pathogenesis by fibroblast activation, suggesting that targeting signaling pathway could be a potential therapeutic approach for pulmonary fibrosis.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |