[No authors listed]
Active vitamin D (1,25(OH)2D) has been shown to regulate numerous cell processes in mammary cells. Degradation of 1,25(OH)2D is initiated by the mitochondrial enzyme, 25-hydroxyvitamin D 24-hydroxylase (CYP24âA1), and provides local control of 1,25(OH)2D bioactivity. Several reports of the association between elevated CYP24âA1 activity and breast cancer incidence, suggest that CYP24âA1 may be a target for therapeutic intervention. Whether CYP24âA1 activity within the mammary epithelium regulates 1,25(OH)2D levels and mammary gland development is yet to shown. We have used a conditional knockout of the Cyp24a1 gene specifically in the mammary epithelium to demonstrate reduced terminal end bud number, ductal outgrowth and branching during puberty and alveologenesis at early pregnancy, by inhibiting proliferation but not apoptosis in both basal and luminal MECs. In vitro study showed increased sensitivity of luminal MECs to lower levels of 1,25(OH)2D with the ablation of Cyp24a1 activity. In summary, Cyp24a1 within MECs plays an important role in modulating postnatal and pregnancy-associated mammary gland development which provides support for inhibiting CYP24âA1 as a potential approach to activating the vitamin D pathway in breast cancer prevention and therapy.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |