例如:"lncRNA", "apoptosis", "WRKY"

Three inflammation-related genes could predict risk in prognosis and metastasis of patients with breast cancer.

Cancer Med. 2019 Feb;8(2):593-605. doi:10.1002/cam4.1962. Epub 2019 Jan 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Current predictive model is not developed by inflammation-related genes to evaluate clinical outcome of breast cancer patients. METHODS:With mRNA expression profiling, we identified 3 mRNAs with significant expression between 15 normal samples and 669 breast cancer patients. Using 7 cell lines and 150 paraffin-embedded specimens, we verified the expression pattern by bio-experiments. Then, we constructed a three-mRNA model by Cox regression method and approved its predictive accuracy in both training set (n = 1095) and 4 testing sets (n = 703). RESULTS:We developed a three-mRNA (TBX21, TGIF2, and CYCS) model to stratify patients into high- and low-risk subgroup with significantly different prognosis. In training set, 5-year OS rate was 84.5% (78.8%-90.5%) vs 73.1% (65.9%-81.2%) for the low- and high-risk group (HR = 1.573 (1.090-2.271); P = 0.016). The predictive value was similar in four independent testing sets (HR>1.600; P < 0.05). This model could assess survival independently with better predictive power compared with single clinicopathological risk factors and any of the three mRNAs. Patients with both low-risk values and any poor prognostic factors had more favorable survival from nonmetastatic status (HR = 1.740 (1.028-2.945), P = 0.039). We established two nomograms for clinical application that integrated this model and another three significant risk factors to forecast survival rates precisely in patients with or without metastasis. CONCLUSIONS:This model is a dependable tool to predict the disease recurrence precisely and could improve the predictive accuracy of survival probability for breast cancer patients with or without metastasis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读