例如:"lncRNA", "apoptosis", "WRKY"

Deficiency of cationic amino acid transporter-2 protects mice from hyperoxia-induced lung injury.

. 2019 Apr 01;316(4):L598-L607. doi:10.1152/ajplung.00223.2018. Epub 2019 Jan 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The pathology of acute lung injury (ALI) involves inducible nitric oxide (NO) synthase (iNOS)-derived NO-induced apoptosis of pulmonary endothelial cells. In vitro, iNOS-derived NO production has been shown to depend on the uptake of l-arginine by the cationic amino acid transporters (CAT). To test the hypothesis that mice deficient in CAT-2 ( slc7a2-/- on a C57BL/6 background) would be protected from hyperoxia-induced ALI, mice ( slc7a2-/- or wild-type) were placed in >95% oxygen (hyperoxia) or 21% oxygen (control) for 60 h. In wild-type mice exposed to hyperoxia, the exhaled nitric oxide (exNO) was twofold greater than in wild-type mice exposed to normoxia ( P < 0.005), whereas in slc7a2-/- mice there was no significant difference between exNO in animals exposed to hyperoxia or normoxia ( P = 0.95). Hyperoxia-exposed wild-type mice had greater ( P < 0.05) lung resistance and a lower ( P < 0.05) lung compliance than did hyperoxia-exposed slc7a2-/- mice. The lung wet-to-dry weight ratio was greater ( P < 0.005) in the hyperoxia-exposed wild-type mice than in hyperoxia-exposed slc7a2-/- mice. Neutrophil infiltration was lower ( P < 0.05) in the hyperoxia-exposed slc7a2-/- mice than in the hyperoxia-exposed wild-type mice as measured by myeloperoxidase activity. The protein concentration in bronchoalveolar lavage fluid was lower ( P < 0.001) in the hyperoxia-exposed slc7a2-/- mice than in similarly exposed wild-type mice. The percent of TUNEL-positive cells in the lung following hyperoxia exposure was significantly lower ( P < 0.001) in the slc7a2-/- mice than in the wild-type mice. These results are consistent with our hypothesis that lack of CAT-2 protects mice from acute lung injury.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读