例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells.

J Nutr Biochem. 2019 Mar;65:46-53. Epub 2018 Dec 07
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Intestinal absorption of ascorbic acid (AA) occurs via a Na+-dependent carrier-mediated process facilitated through the human sodium-dependent vitamin C transporters-1 &-2 (hSVCT1 and hSVCT2). Many studies have shown that hSVCT1 (product of the SLC23A1 gene) is expressed on the apical membrane of polarized enterocytes where it mediates AA absorption. hSVCT1 expression levels are therefore an important determinant of physiological vitamin C homeostasis. However, little is known about posttranscriptional mechanisms that regulate hSVCT1 expression in intestinal epithelia. In this study, we investigated regulation of hSVCT1 by microRNA (miRNA). A pmirGLO-SLC23A1-3'-UTR construct transfected into human intestinal cell lines (Caco-2 and NCM460 cells) showed markedly reduced luciferase activity. Bioinformatic analysis of the SLC23A1-3'-UTR predicted five miRNA binding sites (miR-103a, miR-107, miR-328, miR-384, and miR-499-5p) in the 3'-UTR. Expression of mature miR-103a was markedly higher compared to the other four putative miRNA regulators in both intestinal cell lines and mouse jejunal mucosa. Addition of a miR-103a mimic, but not a miR-103a mutant construct, markedly reduced the luminescence of the pmirGLO-SLC23A1-3'-UTR reporter. Reciprocally, addition of a miR-103a inhibitor significantly increased luciferase reporter activity. Addition of the miR-103a mimic led to a significant inhibition in AA uptake, associated with decreased hSVCT1 mRNA and protein expression in Caco-2 cells. In contrast, the miR-103a inhibitor increased AA uptake, associated with increased levels of hSVCT1 mRNA and protein. These findings provide the first evidence for posttranscriptional regulation of hSVCT1 by miRNA in intestinal epithelial cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读