例如:"lncRNA", "apoptosis", "WRKY"

Rare variants in Protein tyrosine phosphatase, receptor type A (PTPRA) in schizophrenia: Evidence from a family based study.

Schizophr. Res.2019 Apr;206:75-81. Epub 2018 Dec 27
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The contribution of both common and rare risk variants to the genetic architecture of schizophrenia (SZ) has been documented in genome-wide association studies, whole exome and whole genome sequencing approaches. As SZ is highly heritable and segregates in families, highly penetrant rare variants are more likely to be identified through analyses of multiply affected families. Further, much of the gene mapping studies in SZ have utilized individuals of Caucasian ancestry. Analysis of other ethnic groups may be informative. In this study, we aimed at identification of rare, penetrant risk variants utilizing whole exome sequencing (WES) in a three-generation Indian family with multiple members affected. Filtered data from WES, combined with in silico analyses revealed a novel heterozygous missense variant (NM_080841:c.1730C>G:p.T577R; exon18) in Protein tyrosine phosphatase, receptor type A (PTPRA 20p13). The variant was located in an evolutionarily conserved position and predicted to be damaging. Screening for variants in this gene in the WES data of an independent SZ cohort (n = 350) of matched ethnicity, identified five additional rare missense variants with MAF < 0.003, which were also predicted to be damaging. In conclusion, the rare missense variants in PTPRA identified in this study could confer risk for SZ. This has also derived support from concordant data from prior linkage and association, as well as animal studies which indicated a role for PTPRA in glutamate function.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读