[No authors listed]
Compelling evidence indicates that oxidative stress contributes to cocaine neurotoxicity. The present study was performed to elucidate the role of the glutathione peroxidase-1 (GPx-1) in cocaine-induced kindling (convulsive) behaviors in mice. Cocaine-induced convulsive behaviors significantly increased GPx-1, p-IkB, and expression, and oxidative burdens in the hippocampus of mice. There was no significant difference in cocaine-induced p-IkB expression between non-transgenic (non-TG) and GPx-1 overexpressing transgenic (GPx-1â¯TG) mice, but significant differences were observed in cocaine-induced p-JAK2/duanyu18133 expression and oxidative stress between non-TG and GPx-1â¯TG mice. Cocaine-induced glial fibrillary acidic protein (GFAP)-labeled astrocytic level was significantly higher in the hippocampus of GPx-1â¯TG mice. Triple-labeling immunocytochemistry indicated that GPx-1-, and GFAP-immunoreactivities were co-localized in the same cells. AG490, a inhibitor, but not pyrrolidone dithiocarbamate, an NFκB inhibitor, significantly counteracted GPx-1-mediated protective potentials (i.e., anticonvulsant-, antioxidant-, antiapoptotic-effects). Genetic overexpression of GPx-1 significantly attenuated proliferation of Iba-1-labeled microglia induced by cocaine in mice. However, AG490 or astrocytic inhibition (by GFAP antisense oligonucleotide and α-aminoadipate) significantly increased Iba-1-labeled microglial activity and M1 phenotype microglial mRNA levels, reflecting that proinflammatory potentials were mediated by AG490 or astrocytic inhibition. This microglial activation was less pronounced in GPx-1â¯TG than in non-TG mice. Furthermore, either AG490 or astrocytic inhibition significantly counteracted GPx-1-mediated protective potentials. Therefore, our results suggest that astrocytic modulation between GPx-1 and JAK2/duanyu18133 might be one of the underlying mechanisms for protecting against convulsive neurotoxicity induced by cocaine.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |