例如:"lncRNA", "apoptosis", "WRKY"

miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1.

Biochem. Biophys. Res. Commun.2019 Jan 29;509(1):241-248. Epub 2018 Dec 24
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


MicroRNAs (miRNAs) play crucial roles in the pancreatic carcinogenesis and progression. In the present study, we found that miR-9-5p was significantly downregulated in pancreatic cancer tissues and cell lines. The expression levels of miR-9-5p were negatively correlated with tumor stage and vessel invasion. Log-rank tests demonstrated that low expression of miR-9-5p was strongly correlated with poor overall survival in pancreatic cancer patients. Moreover, overexpression of miR-9-5p remarkably inhibited pancreatic cancer cell proliferation by enhancing cell apoptosis and significantly suppressed the invasion of pancreatic cancer cells, whereas low expression of miR-9-5p exhibited the opposite effect. Bioinformatics analysis revealed that GOT1 was a potential target of miR-9-5p, and miR-9-5p inhibited the expression level of GOT1 mRNA by direct binding to its 3'-untranslated region (3'UTR). Expression of miR-9-5p was negatively correlated with GOT1 in pancreatic cancer tissues. Moreover, modulation of miR-9-5p expression could affect the glutamine metabolism and redox homeostasis in pancreatic cancer cells. Furthermore, downregulation of GOT1 counteracted the effects of miR-9-5p repression, whereas its overexpression reversed tumor inhibitory effects of miR-9-5p. Collectively, this study suggested that miR-9-5p regulates GOT1 expression in pancreatic cancer, thereby stunting proliferation, invasion, glutamine metabolism and redox homeostasis, and that miR-9-5p may serve as a prognostic or therapeutic target for pancreatic cancer.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读