例如:"lncRNA", "apoptosis", "WRKY"

Hippocampal Wdr1 Deficit Impairs Learning and Memory by Perturbing F-actin Depolymerization in Mice.

Cereb Cortex. 2019 Sep 13;29(10):4194-4207
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


WD repeat protein 1 (Wdr1), known as a cofactor of actin-depolymerizing factor (ADF)/cofilin, is conserved among eukaryotes, and it plays a critical role in the dynamic reorganization of the actin cytoskeleton. However, the function of Wdr1 in the central nervous system remains elusive. Using Wdr1 conditional knockout mice, we demonstrated that Wdr1 plays a significant role in regulating synaptic plasticity and memory. The knockout mice exhibited altered reversal spatial learning and fear responses. Moreover, the Wdr1 CKO mice showed significant abnormalities in spine morphology and synaptic function, including enhanced hippocampal long-term potentiation and impaired long-term depression. Furthermore, we observed that Wdr1 deficiency perturbed actin rearrangement through regulation of the ADF/cofilin activity. Taken together, these results indicate that Wdr1 in the hippocampal CA1 area plays a critical role in actin dynamics in associative learning and postsynaptic receptor availability.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读