例如:"lncRNA", "apoptosis", "WRKY"

Regulation of mitochondrial iron homeostasis by sideroflexin 2.

J Physiol Sci. 2019 Mar;69(2):359-373. Epub 2018 Dec 20
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Mitochondrial iron is indispensable for heme biosynthesis and iron-sulfur cluster assembly. Several mitochondrial transmembrane proteins have been implicated to function in the biosynthesis of heme and iron-sulfur clusters by transporting reaction intermediates. However, several mitochondrial proteins related to iron metabolism remain uncharacterized. Here, we show that human sideroflexin 2 (SFXN2), a member of the SFXN protein family, is involved in mitochondrial iron metabolism. SFXN2 is an evolutionarily conserved protein that localized to mitochondria via its transmembrane domain. SFXN2-knockout (KO) cells had an increased mitochondrial iron content, which was associated with decreases in the heme content and heme-dependent enzyme activities. By contrast, the activities of iron-sulfur cluster-dependent enzymes were unchanged in SFXN2-KO cells. Moreover, abnormal iron metabolism impaired mitochondrial respiration in SFXN2-KO cells and accelerated iron-mediated death of these cells. Our findings demonstrate that SFXN2 functions in mitochondrial iron metabolism by regulating heme biosynthesis.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读