例如:"lncRNA", "apoptosis", "WRKY"

Extrasynaptic δ-GABAA receptors are high-affinity muscimol receptors.

J. Neurochem.2019 Apr;149(1):41-53. doi:10.1111/jnc.14646. Epub 2019 Mar 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Muscimol, the major psychoactive ingredient in the mushroom Amanita muscaria, has been regarded as a universal non-selective GABA-site agonist. Deletion of the GABAA receptor (GABAA R) δ subunit in mice (δKO) leads to a drastic reduction in high-affinity muscimol binding in brain sections and to a lower behavioral sensitivity to muscimol than their wild type counterparts. Here, we use forebrain and cerebellar brain homogenates from WT and δKO mice to show that deletion of the δ subunit leads to a > 50% loss of high-affinity 5 nM [3 H]muscimol-binding sites despite the relatively low abundance of δ-containing GABAA Rs (δ-GABAA R) in the brain. By subtracting residual high-affinity binding in δKO mice and measuring the slow association and dissociation rates we show that native δ-GABAA Rs in WT mice exhibit high-affinity [3 H]muscimol-binding sites (KD ~1.6 nM on α4βδ receptors in the forebrain and ~1 nM on α6βδ receptors in the cerebellum at 22°C). Co-expression of the δ subunit with α6 and β2 or β3 in recombinant (HEK 293) expression leads to the appearance of a slowly dissociating [3 H]muscimol component. In addition, we compared muscimol currents in recombinant α4β3δ and α4β3 receptors and show that δ subunit co-expression leads to highly muscimol-sensitive currents with an estimated EC50 of around 1-2 nM and slow deactivation kinetics. These data indicate that δ subunit incorporation leads to a dramatic increase in GABAA R muscimol sensitivity. We conclude that biochemical and behavioral low-dose muscimol selectivity for δ-subunit-containing receptors is a result of low nanomolar-binding affinity on δ-GABAA Rs.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读