例如:"lncRNA", "apoptosis", "WRKY"

The MAGI2 gene polymorphism rs2160322 is associated with Graves' disease but not with Hashimoto's thyroiditis.

J. Endocrinol. Invest.2019 Jul;42(7):843-850. Epub 2018 Dec 08
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


PURPOSE:Autoimmune thyroid diseases (AITDs) are chronic organ-specific autoimmune disorders, predominantly including Graves' disease (GD), and Hashimoto's thyroiditis (HT). This study aimed to investigate whether single-nucleotide polymorphisms (SNPs) in MAGI2 and MAGI3 gene contributed to the etiology of AITDs. METHODS:We conducted a case-control study including 1001 patients with AITDs (625 GD, 376 HT) and 846 healthy controls. Subgroup analyses in GD and HT were also performed. RESULTS:The genotypes of rs2160322 in MAGI2 showed a borderline association with AITDs (P = 0.048), and they had a strong correlation with GD (P = 0.012). The frequency of the minor allele G of rs2160322 was significantly higher in the GD patients than in the controls (P = 0.027; OR 1.91; 95% CI 1.020-1.391), especially for GD females (P = 0.008; OR 1.304; 95% CI 1.072-1.587), and those who had positive family history (P = 0.011; OR 1.412; 95% CI 1.083-1.843). For genetic model analysis, the recessive model and homozygous model of rs2160322 showed significant associations with AITDs (P = 0.009; P = 0.019) and GD (P = 0.004; P = 0.005). Nevertheless, our study could not identify any relationship between these SNPs and HT. Due to the low mutation rate of rs1343126 in MAGI3, we were unable to obtain a credible conclusion on its association with AITDs. CONCLUSIONS:Our study identified that MAGI2 rs2160322 was strongly associated with GD susceptibility. The potential dysfunction of tight junction proteins and aberrant epithelial barrier caused by abnormal MAGI2 expression may be a novel mechanism of GD.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读