[No authors listed]
Chromatin dynamics are central to the regulation of gene expression and genome stability, particularly in the presence of environmental signals or stresses that prompt rapid reprogramming of the genome to promote survival or differentiation. While numerous chromatin regulators have been implicated in modulating cellular responses to stress, gaps in our mechanistic understanding of chromatin-based changes during stress suggest that additional proteins are likely critical to these responses and the molecular details underlying their activities are unclear in many cases. We recently identified a role for the relatively uncharacterized SET domain protein Set4 in promoting cell survival during oxidative stress in Saccharomyces cerevisiae. Set4 is a member of the Set3 subfamily of SET domain proteins which are defined by the presence of a PHD finger and divergent SET domain sequences. Here, we integrate our new observations on the function of Set4 with known roles for other related family members, including yeast Set3, fly UpSET and mammalian proteins MLL5 and SETD5. We discuss outstanding questions regarding the molecular mechanisms by which these proteins control gene expression and their potential contributions to cellular responses to environmental stress.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |