[No authors listed]
The protein deacetylase SIRT1 (Sirtuin 1) regulates many cellular processes, including cell-cycle progression, DNA damage response, and metabolism. Although the centrosome is a key regulator of cell-cycle progression and genome stability, little is known concerning SIRT1 controlled centrosome-associated events. Here we report that the centrosome protein Plk2 is acetylated and undergoes deacetylation by SIRT1. Acetylation protects Plk2 from ubiquitination, and SIRT1-mediated deacetylation promotes ubiquitin-dependent degradation of Plk2. SIRT1 controls centriole duplication by temporally modulating centrosomal Plk2 levels. AURKA phosphorylates SIRT1 and promotes the SIRT1-Plk2 interaction in mitosis. In early-mid G1, phosphorylated SIRT1 deacetylates and promotes Plk2 degradation. In late G1, SIRT1 is hypophosphorylated and its affinity to Plk2 is decreased, resulting in a rapid accumulation of centrosomal Plk2, which contributes to the timely initiation of centriole duplication. Collectively, our findings uncover a critical role of SIRT1 in centriole duplication and provide a mechanistic insight into SIRT1-mediated centrosome-associated functions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |