例如:"lncRNA", "apoptosis", "WRKY"

BK channels and a cGMP-dependent protein kinase (PKG) function through independent mechanisms to regulate the tolerance of synaptic transmission to acute oxidative stress at the Drosophila larval neuromuscular junction.

J. Neurogenet.2018 Sep;32(3):246-255. doi:10.1080/01677063.2018.1500571
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


A cGMP-dependent protein kinase (PKG) has previously been shown to regulate synaptic transmission at the Drosophila neuromuscular junction (NMJ) during acute oxidative stress, potentially through modulation of downstream K+ channel kinetics; however, the specific K+ channels through which PKG functions remains unclear. In this study, we hypothesized that PKG may be acting on calcium-activated large-conductance Slo K+ channels, or BK channels. We found that genetic elimination and pharmacological inhibition of BK channel conductance increases synaptic transmission tolerance to acute H2O2-induced oxidative stress. Furthermore, we discovered that activation of PKG in BK channel loss-of-function (Slo4) mutants significantly decreases time to stimulus-induced synaptic failure, providing the first evidence of PKG and BK channels functioning independently to control synaptic transmission tolerance to acute oxidative stress.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读