例如:"lncRNA", "apoptosis", "WRKY"

Bombyx mori transcription factors FoxA and SAGE divergently regulate the expression of wing cuticle protein gene 4 during metamorphosis.

J Biol Chem. 2019 Jan 11;294(2):632-643. Epub 2018 Nov 14
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Stage-specific gene expression governs metamorphosis of the silkworm, Bombyx mori. B. mori wing cuticle protein gene 4 (BmWCP4) is an essential gene for wing disc development expressed specifically during pupation. BmWCP4 transcription is suppressed at the larval stage by unknown mechanisms, which we sought to elucidate here. Bioinformatics analysis predicted seven potential Forkhead box (Fox) cis-regulatory elements (CREs) in the BmWCP4 promoter region, and we found that Fox CRE6 contributes to suppression of BmWCP4 expression. Electrophoretic mobility shift (EMSA) and DNA pull-down assays revealed that BmFoxA suppressed activity at the BmWCP4 promoter by specifically binding to the Fox CRE6. The expression level of BmFoxA in the wing discs was higher during the larval stage than at the pupal stage. In contrast, expression of another transcription factor, increased over the course of development. Of note, the hormone 20-hydroxyecdysone (20E), which governs molting in insects, suppressed BmFoxA expression in the wing discs and up-regulated that of BmSage EMSA and cell co-transfection assays indicated that interacted with BmFoxA and suppressed its binding to the Fox CRE6, thereby releasing BmFoxA-mediated suppression of BmWCP4 In summary, higher BmFoxA expression during the larval stage suppresses BmWCP4 expression by binding to the Fox CRE6 on the BmWCP4 promoter. During metamorphosis, Bmduanyu1798 forms a complex with BmFoxA to relieve this repression, initiating BmWCP4 expression. Taken together, this study reveals a switchlike role for BmFoxA in regulating BmWCP4 expression and provides new insights into the regulatory regulation of wing disc development in insects.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读