[No authors listed]
How vesicle trafficking components actively contribute to regulation of paracrine signaling is unclear. We genetically uncovered a requirement for α-soluble NSF attachment protein (α-Snap) in the activation of the Janus kinase/signal transducer and activator of transcription pathway during Drosophila egg development. α-Snap, a well-conserved vesicle trafficking regulator, mediates association of N-ethylmaleimide-sensitive factor (NSF) and SNAREs to promote vesicle fusion. Depletion of α-Snap or the SNARE family member Syntaxin1A in epithelia blocks polar cells maintenance and prevents specification of motile border cells. Blocking apoptosis rescues polar cell maintenance in α-Snap-depleted egg chambers, indicating that the lack of border cells in mutants is due to impaired signaling. Genetic experiments implicate α-Snap and NSF in secretion of a cytokine. Live imaging suggests that changes in intracellular Ca2+ are linked to this event. Our data suggest a cell-type specific requirement for particular vesicle trafficking components in regulated exocytosis during development. Given the central role for signaling in immunity, this work may shed light on regulation of cytokine release in humans.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |