例如:"lncRNA", "apoptosis", "WRKY"

miR-124-3p attenuates neuropathic pain induced by chronic sciatic nerve injury in rats via targeting EZH2.

J. Cell. Biochem.2019 Apr;120(4):5747-5755. doi:10.1002/jcb.27861. Epub 2018 Nov 02
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Emerging evidence has suggested that microRNAs play a critical role in neuropathic pain development. However, the biological role of miRNAs in regulating neuropathic pain remains barely known. In our present study, we found that miR-124-3p was significantly downregulated in rats after chronic sciatic nerve injury (CCI). In addition, it was showed that overexpression of miR-124-3p obviously repressed mechanical allodynia and heat hyperalgesia. Meanwhile, it has been reported that neuroinflammation can contribute a lot to neuropathic pain progression. Here, we found that inflammatory cytokine (IL-6, IL-1β, and TNF-⍺) protein expression in rats after CCI greatly increased and miR-124-3p mimics depressed inflammation cytokine levels. Consistently, miR-124-3p alleviated inflammation production in lipopolysaccharide-incubated spinal microglial cells. Bioinformatics analysis revealed that EZH2 acted as a direct target of miR-124-3p, which participated in the miR-124-3p-modulated effects on neuropathic pain development and neuroinflammation. We observed that miR-124-3p was able to promote neuroinflammation and neuropathic pain through targeting EZH2. The direct correlation between them was validated in our current study using dual-luciferase reporter assays. Subsequently, it was manifested that EZH2 abrogated the inhibitory role of miR-124-3p on neuropathic pain progression in CCI rats. Taken these together, our findings highlighted a novel contribution of miR-124-3p to neuropathic pain and indicated the possibilities for developing novel therapeutic options for neuropathic pain.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读