例如:"lncRNA", "apoptosis", "WRKY"

The functional consequences of sodium channel NaV 1.8 in human left ventricular hypertrophy.

ESC Heart Fail. 2019 Feb;6(1):154-163. doi:10.1002/ehf2.12378. Epub 2018 Oct 30
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


AIMS:In hypertrophy and heart failure, the proarrhythmic persistent Na+ current (INaL ) is enhanced. We aimed to investigate the electrophysiological role of neuronal sodium channel NaV 1.8 in human hypertrophied myocardium. METHODS AND RESULTS:Myocardial tissue of 24 patients suffering from symptomatic severe aortic stenosis and concomitant significant afterload-induced hypertrophy with preserved ejection fraction was used and compared with 12 healthy controls. We performed quantitative real-time PCR and western blot and detected a significant up-regulation of NaV 1.8 mRNA (2.34-fold) and protein expression (1.96-fold) in human hypertrophied myocardium compared with healthy hearts. Interestingly, NaV 1.5 protein expression was significantly reduced in parallel (0.60-fold). Using whole-cell patch-clamp technique, we found that the prominent INaL was significantly reduced after addition of novel NaV 1.8-specific blockers either A-803467 (30 nM) or PF-01247324 (1 μM) in human hypertrophic cardiomyocytes. This clearly demonstrates the relevant contribution of NaV 1.8 to this proarrhythmic current. We observed a significant action potential duration shortening and performed confocal microscopy, demonstrating a 50% decrease in proarrhythmic diastolic sarcoplasmic reticulum (SR)-Ca2+ leak and SR-Ca2+ spark frequency after exposure to both NaV 1.8 inhibitors. CONCLUSIONS:We show for the first time that the neuronal sodium channel NaV 1.8 is up-regulated on mRNA and protein level in the human hypertrophied myocardium. Furthermore, inhibition of NaV 1.8 reduced augmented INaL , abbreviated the action potential duration, and decreased the SR-Ca2+ leak. The findings of our study suggest that NaV 1.8 could be a promising antiarrhythmic therapeutic target and merits further investigation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读