例如:"lncRNA", "apoptosis", "WRKY"

TAOK3 Regulates Canonical TCR Signaling by Preventing Early SHP-1-Mediated Inactivation of LCK.

J. Immunol.2018 Dec 01;201(11):3431-3442. Epub 2018 Oct 29
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Activation of LCK is required for canonical TCR signaling leading to T cell responses. LCK activation also initiates a negative feedback loop mediated by the phosphatase SHP-1 that turns off TCR signaling. In this article, we report that the thousand-and-one amino acid kinase 3 (TAOK3) is a key regulator of this feedback. TAOK3 is a serine/threonine kinase expressed in many different cell types including T cells. TAOK3-deficient human T cells had impaired LCK-dependent TCR signaling resulting in a defect in IL-2 response to canonical TCR signaling but not to bacterial superantigens, which use an LCK-independent pathway. This impairment was associated with enhanced interaction of LCK with SHP-1 after TCR engagement and rapid termination of TCR signals, a defect corrected by TAOK3 reconstitution. Thus, TAOK3 is a positive regulator of TCR signaling by preventing premature SHP-1-mediated inactivation of LCK. This mechanism may also regulate signaling by other Src family kinase-dependent receptors.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读