例如:"lncRNA", "apoptosis", "WRKY"

Endothelial Mitochondrial Preprotein Translocase Tomm7-Rac1 Signaling Axis Dominates Cerebrovascular Network Homeostasis.

Arterioscler. Thromb. Vasc. Biol.2018 Nov;38(11):2665-2677. doi:10.1161/ATVBAHA.118.311538
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Objective- Mitochondria are the important yet most underutilized target for cardio-cerebrovascular function integrity and disorders. The Tom (translocases of outer membrane) complex are the critical determinant of mitochondrial homeostasis for making organs acclimate physiological and pathological insults; however, their roles in the vascular system remain unknown. Approach and Results- A combination of studies in the vascular-specific transgenic zebrafish and genetically engineered mice was conducted. Vascular casting and imaging, endothelial angiogenesis, and mitochondrial protein import were performed to dissect potential mechanisms. A loss-of-function genetic screening in zebrafish identified that selective inactivation of the tomm7 (translocase of outer mitochondrial membrane 7) gene, which encodes a small subunit of the Tom complex, specially impaired cerebrovascular network formation. Ablation of the ortholog Tomm7 in mice recapitulated cerebrovascular abnormalities. Restoration of the cerebrovascular anomaly by an endothelial-specific transgenesis of tomm7 further indicated a defect in endothelial function. Mechanistically, Tomm7 deficit in endothelial cells induced an increased import of Rac1 (Ras-related C3 botulinum toxin substrate 1) protein into mitochondria and facilitated the mitochondrial Rac1-coupled redox signaling, which incurred angiogenic impairment that underlies cerebrovascular network malformation. Conclusions- Tomm7 drives brain angiogenesis and cerebrovascular network formation through modulating mitochondrial Rac1 signaling within the endothelium.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读