例如:"lncRNA", "apoptosis", "WRKY"

Caveolae Link CaV3.2 Channels to BKCa-Mediated Feedback in Vascular Smooth Muscle.

Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2371-2381. doi:10.1161/ATVBAHA.118.311394
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Objective- This study examined whether caveolae position CaV3.2 (T-type Ca2+ channel encoded by the α-3.2 subunit) sufficiently close to RyR (ryanodine receptors) for extracellular Ca2+ influx to trigger Ca2+ sparks and large-conductance Ca2+-activated K+ channel feedback. Approach and Results- Using smooth muscle cells from mouse mesenteric arteries, the proximity ligation assay confirmed that CaV3.2 reside within 40 nm of caveolin 1, a key caveolae protein. Methyl-β-cyclodextrin, a cholesterol depleting agent that disrupts caveolae, suppressed CaV3.2 activity along with large-conductance Ca2+-activated K+-mediated spontaneous transient outward currents in cells from C57BL/6 but not CaV3.2-/- mice. Genetic deletion of caveolin 1, a perturbation that prevents caveolae formation, also impaired spontaneous transient outward current production but did so without impairing Ca2+ channel activity, including CaV3.2. These observations indicate a mistargeting of CaV3.2 in caveolin 1-/- mice, a view supported by a loss of Ni2+-sensitive Ca2+ spark generation and colocalization signal (CaV3.2-RyR) from the proximity ligation assay. Vasomotor and membrane potential measurements confirmed that cellular disruption of the CaV3.2-RyR axis functionally impaired the ability of large-conductance Ca2+-activated K+ to set tone in pressurized caveolin 1-/- arteries. Conclusions- Caveolae play a critical role in protein targeting and preserving the close structural relationship between CaV3.2 and RyR needed to drive negative feedback control in resistance arteries.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读