[No authors listed]
Background: Photoreceptors, light-sensing neurons in retina, are central to vision. Photoreceptor cell death (PCD) is observed in most inherited and acquired retinal dystrophies. But the underlying molecular mechanism of PCD is unclear. Photoreceptors are sturdy neurons that survive high oxidative and phototoxic stress, which are known threats to genome stability. Unexpectedly, DNA damage response in mice photoreceptors is compromised; mainly due to loss of crucial DNA repair proteins, ATM and 53BP1. We tried to understand the molecular function of ATM and 53BP1 in response to oxidative stress and how suppression of DNA repair response in mice retina affect photoreceptor cell survival. Methods: We use the state of art cell biology methods and structure-function analysis of mice retina. RNA:DNA hybrids (S9.6 antibody and Hybrid-binding domain of RNaseH1) and DNA repair foci (gH2AX and 53BP1) are quantified by confocal microscopy, in retinal sections and cultured cell lines. Oxidative stress, DNA double strand break, RNaseH1 expression and small-molecule kinase-inhibitors were used to understand the role of ATM and RNA:DNA hybrids in DNA repair. Lastly, retinal structure and function of ATM deficient mice, in Retinal degeneration 1 (Pde6brd1) background, is studied using Immunohistochemistry and Electroretinography. Results: Our work has three novel findings: firstly, both human and mice photoreceptor cells specifically accumulate RNA:DNA hybrids, a structure formed by re-hybridization of nascent RNA with template DNA during transcription. Secondly, RNA:DNA-hybrids promote ataxia-telangiectasia mutated (ATM) activation during oxidative stress and 53BP1-foci formation during downstream DNA repair process. Thirdly, loss of ATM -in murine photoreceptors- protract DNA repair but also promote their survival. Conclusions: We propose that due to high oxidative stress and accumulation of RNA:DNA-hybrids in photoreceptors, expression of ATM is tightly regulated to prevent PCD. Inefficient regulation of ATM expression could be central to PCD and inhibition of ATM-activation could suppress PCD in retinal dystrophy patients.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |