例如:"lncRNA", "apoptosis", "WRKY"

MiR-425 involves in the development and progression of renal cell carcinoma by inhibiting E2F6.

Eur Rev Med Pharmacol Sci. 2018 Oct;22(19):6300-6307. doi:10.26355/eurrev_201810_16040
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


OBJECTIVE:To investigate the effect of miR-425 on the proliferation and apoptosis of clear cell renal carcinoma (ccRCA) cells, and to explore the underlying mechanism. PATIENTS AND METHODS:A total of 80 pairs of human clear cell renal carcinoma (ccRCA) and cancer-adjacent normal tissue samples were collected in this study. Human ccRCA cell line (786-O) and normal human kidney cell line (HK-2) were used in cellular research. The expression level of miR-425 was detected in ccRCA tissues and cells, respectively. Target genes of miR-425 were predicted by bioinformatics and verified by luciferase reporter gene assay. Moreover, the role of miR-425 in regulating E2F6 as well as its effect on the proliferation and apoptosis of ccRCA cells were detected. RESULTS:Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) results showed that the expression of miR-425 was significantly decreased in ccRCA tissues and cells. The proliferation ability and cell cycle of 786-O cells were significantly inhibited after miR-425 overexpression. The percentage of cells in G0/G1 phase was remarkably increased, while the percentage of cells in S and G2/M phases was significantly decreased. Besides, the number of apoptotic cells was significantly increased in the miR-425 intervention group. On-line target gene prediction software indicated that E2F6 was the potential downstream target gene of miR-425. RT-PCR, Western blotting and luciferase reporter gene assay demonstrated that the expression of E2F6 was negatively regulated by miR-425. In addition, subsequent experiments showed that the up-regulation of E2F6 could suppress the inhibitory effect of miR-425 on the proliferation and apoptosis of ccRCA cells. CONCLUSIONS:Our research demonstrated the inhibitory function of miR-425 in ccRCA. Therefore, the miR-425/E2F6 axis was expected to be one of the targets of ccRCA targeted therapy.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读