例如:"lncRNA", "apoptosis", "WRKY"

TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma.

Cell Commun. Signal. 2018 Oct 16;16(1):68
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


BACKGROUND:Myeloma bone disease (MBD) can cause bone destruction and increase the level of Ca2+ concentration in the bone marrow microenvironment by stimulating osteoclastic differentiation. Nevertheless, the relationships between MBD and highly efficient stimuli of Ca2+ in multiple myeloma (MM) progression, and possible regulatory mechanisms are poorly defined. Here, we reported that the nonselective cation channel transient receptor potential vanilloid 2 (TRPV2) plays a functional role in Ca2+ oscillations and osteoclastogenesis. METHODS:To investigate the expression of TRPV2 in MM, we analyzed publicly available MM data sets and performed immunohistochemistry in MM patients. The correlations between TRPV2 expression levels and osteoclast-related cytokines were analyzed. Fluo-4 staining and ELISA assays were used to assess the regulated function of TRPV2 in intracellular Ca2+ and cytokines. Western blotting and Chromatin immunoprecipitation (ChIP) assays were performed to explore the signaling pathway of TRPV2-induced osteoclastic differentiation. Western blotting, ELISA and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect the biological effects of TRPV2 inhibitor on osteoclastogenesis. RESULTS:The functional expression of TRPV2, involved in the osteolysis through gating the calcium influx, was changed in the MM cells cultured in a high Ca2+ environment. Mechanistically, TRPV2 modulates nuclear factor-κB ligand (RANKL)-dependent osteoclastic differentiation through the Ca2+-calcineurin-NFAT signaling pathway. Of clinical relevance, systemic administration with SKF96365 could attenuate the MM-induced osteoclast formation in vitro. CONCLUSIONS:Our study uncovers the possible roles of TRPV2, which enhances MBD, suggesting that targeting osteocyte-MM cells interactions through blockade of TRPV2 channel may provide a promising treatment strategy in MM.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读