例如:"lncRNA", "apoptosis", "WRKY"

Green leaf volatile-burst in Arabidopsis is governed by galactolipid oxygenation by a lipoxygenase that is under control of calcium ion.

Biochem. Biophys. Res. Commun.2018 Nov 02;505(3):939-944. Epub 2018 Oct 09
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Plants form green leaf volatiles (GLVs) almost instantly after tissue disruption caused by damages, such as herbivore damage. This rapid formation of GLVs, namely GLV-burst, is an essential factor for the plants' GLV-dependent direct and indirect defenses. However, mechanism of GLV-burst remains unknown. We observed that the formation of monogalactosyldiacylglycerol hydroperoxides (MGDG-OOHs) by Arabidopsis lipoxygenase 2 (AtLOX2) governs GLV-burst in Arabidopsis. Addition of a Ca2+ selective chelating reagent, BAPTA, during tissue disruption effectively suppressed the formation of MGDG-OOHs as well as GLV-burst. This suppression was relieved by the addition of Ca2+. Therefore, we propose that Ca2+-dependent activation of AtLOX2 facilitates GLV-burst formation as observed in leukotriene formation, which is regulated by Ca2+-dependent activation of LOXs in animal cells.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读