例如:"lncRNA", "apoptosis", "WRKY"

MicroRNA-107 regulates anesthesia-induced neural injury in embryonic stem cell derived neurons.

IUBMB Life. 2019 Jan;71(1):20-27. doi:10.1002/iub.1911. Epub 2018 Oct 11
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Ketamine, though widely used in pediatric anesthesia, may induce cortical neurotoxicity in young patients. This study focused on an in vitro model of rat brain embryonic stem cell (ESC)-derived neurons to investigate the effects of microRNA-107 (miR-107) on ketamine-induced neural injury. Rat brain ESCs were proliferated in vitro and differentiated toward neuronal fate. Ketamine induced neural injury in ESC-derived neurons was inspected by TUNEL and neurite growth assays. Ketamine-induce aberrant miR-107 expression was examined by qRT-PCR. MiR-107 was downregulated in ESCs through lentiviral transduction. Its effect on ketamine-induced neural injury in ESC-derived neurons was then examined. Potential downstream target of miR-107, brain derived neurotrophin factor (BDNF), was inspected by dual-luciferase reporter assay and qRT-PCR. BDNF was knocked down, through siRNA transfection, in NSCs to investigate its functional involvement in miR-107 mediated neural protection in ketamine-injured NSC-derived neurons. Ketamine induced apoptosis, neurite degeneration, and upregulated miR-107 in NSC-derived neurons. Lentivirus-mediated miR-107 downregulation attenuated ketamine-induced neural injury. BDNF was proven to be directly and inversely regulated by miR-107 in NSC-derived neurons. SiRNA-mediated BDNF inhibition reversed the protective effect of miR-107 downregulation on ketamine injury in NSC-derived neurons. MiR-107 / BDNF was demonstrated to be an important epigenetic signaling pathway in regulating ketamine-induced neural injury in cortical neurons. © 2018 The Authors. IUBMB Life published by Wiley Periodicals,Inc. on behalf of International Union of Biochemistry and 71(1):20-27, 2019.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读