例如:"lncRNA", "apoptosis", "WRKY"

Non-canonical activation of β-catenin by PRL-3 phosphatase in acute myeloid leukemia.

Oncogene. 2019 Feb;38(9):1508-1519. Epub 2018 Oct 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Aberrant activation of Wnt/β-catenin signaling pathway is essential for the development of AML; however, the mechanistic basis for this dysregulation is unclear. PRL-3 is an oncogenic phosphatase implicated in the development of LSCs. Here, we identified Leo1 as a direct and specific substrate of PRL-3. Serine-dephosphorylated form of Leo1 binds directly to β-catenin, promoting the nuclear accumulation of β-catenin and transactivation of TCF/LEF downstream target genes such as cyclin D1 and c-myc. Importantly, overexpression of PRL-3 in AML cells displayed enhanced sensitivity towards β-catenin inhibition in vitro and in vivo, suggesting that these cells are addicted to β-catenin signaling. Altogether, our study revealed a novel regulatory role of PRL-3 in the sustenance of aberrant β-catenin signaling in AML. PRL-3 may serve as a biomarker to select for the subset of AML patients who are likely to benefit from treatment with β-catenin inhibitors. Our study presents a new avenue of cancer inhibition driven by PRL-3 overexpression or β-catenin hyperactivation.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读