例如:"lncRNA", "apoptosis", "WRKY"

Nuclear calcineurin is a sensor for detecting Ca2+ release from the nuclear envelope via IP3R.

J. Mol. Med.2018 Nov;96(11):1239-1249. Epub 2018 Oct 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


In continuously beating cells like cardiac myocytes, there are rapid alterations of cytosolic Ca2+ levels. We therefore hypothesize that decoding Ca2+ signals for hypertrophic signaling requires intracellular Ca2+ microdomains that are partly independent from cytosolic Ca2+. Furthermore, there is a need for a Ca2+ sensor within these microdomains that translates Ca2+ signals into hypertrophic signaling. Recent evidence suggested that the nucleus of cardiac myocytes might be a Ca2+ microdomain and that calcineurin, once translocated into the nucleus, could act as a nuclear Ca2+ sensor. We demonstrate that nuclear calcineurin was able to act as a nuclear Ca2+ sensor detecting local Ca2+ release from the nuclear envelope via IP3R. Nuclear calcineurin mutants defective for Ca2+ binding failed to activate NFAT-dependent transcription. Under hypertrophic conditions Ca2+ transients in the nuclear microdomain were significantly higher than in the cytosol providing a basis for sustained calcineurin/NFAT-mediated signaling uncoupled from cytosolic Ca2+. Measurements of nuclear and cytosolic Ca2+ transients in IP3 sponge mice showed no increase of Ca2+ levels during diastole as we detected in wild-type mice. Nuclei, isolated from ventricular myocytes of mice after chronic Ang II treatment, showed an elevation of IP3R2 expression which was dependent on calcineurin/NFAT signaling and persisted for 3 weeks after removal of the Ang II stimulus. These data provide an explanation how Ca2+ and calcineurin might regulate transcription in cardiomyocytes in response to neurohumoral signals independently from their role in cardiac contraction control. KEY • Calcineurin acts as an intranuclear Ca2+ sensor to promote NFAT activity. • Nuclear Ca2+ in cardiac myocytes increases via IP3R2 upon Ang II stimulation. • IP3R2 expression is directly dependent on calcineurin/NFAT.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读