[No authors listed]
This study investigates the modulation of Type I IFN induction of an antiviral state by HIV. IFNs, including IFN-α, are key innate immune cytokines that activate the pathway leading to the expression of IFN-stimulated genes. IFN-stimulated gene expression establishes the antiviral state, limiting viral infection in IFN-α-stimulated microenvironments. Our previous studies have shown that HIV proteins disrupt the induction of IFN-α by degradation of IFN-β promoter stimulator-1, an adaptor protein for the up-regulation and release of IFN-α into the local microenvironment via the retinoic acid-inducible gene 1-like receptor signaling pathway. However, IFN-α is still released from other sources such as plasmacytoid dendritic cells via TLR-dependent recognition of HIV. Here we report that the activation of the JAK/duanyu1813 pathway by IFN-α stimulation is disrupted by HIV proteins Vpu and Nef, which both reduce IFN-α induction of phosphorylation. Thus, HIV would still be able to avoid antiviral protection induced by IFN-α in the local microenvironment. These findings show that HIV blocks multiple signaling points that would lead to the up-regulation of IFN-stimulated genes, allowing more effective replication in IFN-α-rich environments.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |