例如:"lncRNA", "apoptosis", "WRKY"

Immediate-early gene Homer1a intranuclear transcription focus intensity as a measure of relative neural activation.

Hippocampus. 2019 Jun;29(6):481-490. doi:10.1002/hipo.23036. Epub 2018 Nov 16
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Immediate-early genes (IEGs) exhibit a rapid, transient transcription response to neuronal activation. Fluorescently labeled mRNA transcripts appear as bright intranuclear transcription foci (INF), which have been used as an all-or-nothing indicator of recent neuronal activity; however, it would be useful to know whether INF fluorescence can be used effectively to assess relative activations within a neural population. We quantified the Homer1a (H1a) response of hippocampal neurons to systematically varied numbers of exposures to the same places by inducing male Long-Evans rats to run laps around a track. Previous studies reveal relatively stable firing rates across laps on a familiar track. A strong linear trend (r2  > 0.9) in INF intensity was observed between 1 and 25 laps, after which INF intensity declined as a consequence of dispersion related to the greater elapsed time. When the integrated fluorescence of the entire nucleus was considered instead, the linear relationship extended to 50 laps. However, there was only an approximate doubling of H1a detected for this 50-fold variation in total spiking. Thus, the intranuclear H1a RNA fluorescent signal does provide a relative measure of how many times a set of neurons was activated over a ~10 min period, but the dynamic range and hence signal-to-noise ratios are poor. This low dynamic range may reflect previously reported reductions in the IEG response during repeated episodes of behavior over longer time scales. It remains to be determined how well the H1a signal reflects relative firing rates within a population of neurons in response to a single, discrete behavioral event.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读