例如:"lncRNA", "apoptosis", "WRKY"

Introduction of an extra tryptophan fluorophore by cataract-associating mutations destabilizes βB2-crystallin and promotes aggregation.

Biochem. Biophys. Res. Commun.2018 Oct 12;504(4):851-856. Epub 2018 Sep 13
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


β/γ-Crystallins are predominant structural proteins in vertebrate lens with unique properties of extremely high solubility, long-term stability and resistance to UV damage. Four conserved Trp residues in β/γ-crystallins account for UV absorbance and thereafter fluorescence quenching to avoid photodamage. Herein we found that βB2-crystallin Trp fluorescence was greatly enhanced by the introduction of an extra unquenched Trp fluorophore by cataract-associated mutations S31W and R145W. Both mutations impaired oligomerization, decreased stability and promote thermal aggregation, while S31W was more deleterious. S31W accelerated βB2-crystallin aggregation under UV damaging conditions, whereas R145W delayed. These observations suggested that the introduction of an extra Trp fluorophore had complicated effects on βB2-crystallin stability and aggregation against various stresses. Our findings highlight that the number of Trp fluorophores in β/γ-crystallin is evolutionarily optimized to exquisitely perform their structural roles in the lens.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读