例如:"lncRNA", "apoptosis", "WRKY"

ER Stress Activates the TOR Pathway through Atf6.

J Mol Signal. 2018 Apr 23;13:1. doi:10.5334/1750-2187-13-1
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Cellular signaling pathways are often interconnected. They accurately and efficiently regulate essential cell functions such as protein synthesis, cell growth, and survival. The target of rapamycin (TOR) signaling pathway and the endoplasmic reticulum (ER) stress response pathway regulate similar cellular processes. However, the crosstalk between them has not been appreciated until recently and the detailed mechanisms remain unclear. Here, we show that ER stress-inducing drugs activate the TOR signaling pathway in S2R+ Drosophila cells. Activating transcription factor 6 (Atf6), a major stress-responsive ER transmembrane protein, is responsible for ER stress-induced TOR activation. Supporting the finding, we further show that knocking down of both site-1/2 proteases (S1P/S2P), Atf6 processing enzymes, are necessary to connect the two pathways.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读