例如:"lncRNA", "apoptosis", "WRKY"

The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells.

Cell Rep. 2018 Sep 11;24(11):2808-2818.e4
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读