例如:"lncRNA", "apoptosis", "WRKY"

Vesicle sub-pool organization at inner hair cell ribbon synapses.

EMBO Rep. 2018 Nov;19(11). Epub 2018 Sep 10
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


The afferent inner hair cell synapse harbors the synaptic ribbon, which ensures a constant vesicle supply. Synaptic vesicles (SVs) are arranged in morphologically discernable pools, linked via filaments to the ribbon or the presynaptic membrane. We propose that filaments play a major role in SV resupply and exocytosis at the ribbon. Using advanced electron microscopy, we demonstrate that SVs are organized in sub-pools defined by the filament number per vesicle and its connections. Upon stimulation, SVs increasingly linked to other vesicles and to the ribbon, whereas single-tethered SVs dominated at the membrane. Mutant mice for the hair cell protein otoferlin (pachanga, Otof/ ) are profoundly deaf with reduced sustained release, serving as a model to investigate the SV replenishment at IHCs. Upon stimulation, multiple-tethered and docked vesicles (rarely observed in wild-type) accumulated at Otof/ active zones due to an impairment downstream of docking. Conclusively, vesicles are organized in sub-pools at ribbon-type active zones by filaments to support vesicle supply, transport, and finally release.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读