[No authors listed]
Abnormal endocardial cushion formation is a major cause of congenital heart valve disease, which is a common birth defect with significant morbidity and mortality. Although β-catenin and BMP2 are two well-known regulators of endocardial cushion formation, their interaction in this process is largely unknown. Here, we report that deletion of β-catenin in myocardium results in formation of hypoplastic endocardial cushions accompanying a decrease of mesenchymal cell proliferation. Loss of β-catenin reduced Bmp2 expression in myocardium and SMAD signaling in cushion mesenchyme. Exogenous BMP2 recombinant proteins fully rescued the proliferation defect of mesenchymal cells in cultured heart explants from myocardial β-catenin knockout embryos. Using a canonical WNT signaling reporter mouse line, we showed that cushion myocardium exhibited high WNT/β-catenin activities during endocardial cushion growth. Selective disruption of the signaling function of β-catenin resulted in a cushion growth defect similar to that caused by the complete loss of β-catenin. Together, these observations demonstrate that myocardial β-catenin signaling function promotes mesenchymal cell proliferation and endocardial cushion expansion through inducing BMP signaling.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |