例如:"lncRNA", "apoptosis", "WRKY"

Molecular Neuroprotection Induced by Zinc-Dependent Expression of Hepatitis C-Derived Protein NS5A Targeting Kv2.1 Potassium Channels.

J. Pharmacol. Exp. Ther.2018 Nov;367(2):348-355. Epub 2018 Sep 06
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


We present the design of an innovative molecular neuroprotective strategy and provide proof-of-concept for its implementation, relying on the injury-mediated activation of an ectopic gene construct. As oxidative injury leads to the intracellular liberation of zinc, we hypothesize that tapping onto the zinc-activated metal regulatory element (MRE) transcription factor 1 system to drive expression of the Kv2.1-targeted hepatitis C protein NS5A (hepatitis C nonstructural protein 5A) will provide neuroprotection by preventing cell death-enabling cellular potassium loss in rat cortical neurons in vitro. Indeed, using biochemical and morphologic assays, we demonstrate rapid expression of MRE-driven products in neurons. Further, we report that MRE-driven NS5A expression, induced by a slowly evolving excitotoxic stimulus, functionally blocks injurious, enhanced Kv2.1 potassium whole-cell currents and improves neuronal viability. We suggest this form of "on-demand" neuroprotection could provide the basis for a tenable therapeutic strategy to prevent neuronal cell death in neurodegeneration.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读