例如:"lncRNA", "apoptosis", "WRKY"

Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen II and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose.

J. Bone Miner. Metab.2019 May;37(3):455-466. Epub 2018 Sep 05
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
{{ author.authorName }}{{getOrganisationIndexOf(author)}} {{ author.authorName }}{{getOrganisationIndexOf(author)}}
+ et al

[No authors listed]

Author information
  • {{index+1}} {{ organisation }}

摘要


Diabetes can cause intervertebral disc degeneration by accelerating apoptosis and senescence of nucleus pulposus mesenchymal stem cells (NPMSCs). The aim of this study was to determine the effect of umbilical cord mesenchymal stem cells (UCMSCs) conditioned medium on high glucose (HG) induced degradation of NPMSCs produced extracellular matrix. NPMSCs were isolated from the inner intervertebral disc tissue using type XI collagenase digestion. According to Annexin V/propidium iodide (PI) flow cytometry analysis; HG leads to an increase in the rate of NPMSCs apoptosis. HG injury also resulted in a marked decrease in the percentage of cells in G0/G1 phase and an increase in cells in S and G2/M phases, indicating that HG induces cell cycle arrest of NPMSCs. Treatment with MSC-CM abolished the effect of HG on cell senescence. HG also significantly inhibited collagen II and aggrecan expression in NPMSCs. After MSC-CM treatment, the expression of these two extracellular matrix components was restored. Exposure to HG resulted in phosphorylation of p38 MAPK, while the levels of total p38 MAPK were not affected. When treated with MSC-CM, phosphorylated p38 MAPK levels of NPMSCs were lower than those without CM treatment. Our data also showed that p38 MAPK inhibitor SB203580 can attenuated phosphorylation of p38 MAPK and resumed the collagen II and aggrecan expression in NPMSCs. In summary, this study demonstrated that MSC-CM has the potential to alleviate HG induced extracellular matrix degradation via the p38 MAPK pathway.

KEYWORDS: {{ getKeywords(articleDetailText.words) }}

基因功能


  • {{$index+1}}.{{ gene }}

图表


原始数据


 保存测序数据
Sample name
Organism Experiment title Sample type Library instrument Attributes
{{attr}}
{{ dataList.sampleTitle }}
{{ dataList.organism }} {{ dataList.expermentTitle }} {{ dataList.sampleType }} {{ dataList.libraryInstrument }} {{ showAttributeName(index,attr,dataList.attributes) }}

文献解读