[No authors listed]
The gliotransmitter glutamate in different brain regions modulates neuronal excitability and synaptic transmission through a variety of mechanisms. Among the hallmarks of astrocytic glutamate release are the slow depolarizing inward currents (SICs) in neurons mediated by N-methyl-d-aspartate receptor activation. Different stimuli that evoke Ca2+ elevations in astrocytes induce neuronal SICs suggesting a Ca2+ -dependent exocytotic glutamate release mechanism of SIC generation. To gain new insights into this mechanism, we investigated the relationship between astrocytic Ca2+ elevations and neuronal SICs in mouse hippocampal slice preparations. Here we provide evidence that SICs, occurring either spontaneously or following a hypotonic challenge, are unchanged in the virtual absence of Ca2+ signal changes at astrocytic soma and processes, including spatially restricted Ca2+ microdomains. SICs are also unchanged in the presence of Bafilomycin A1 that after prolonged slice incubation depletes glutamate from astrocytic vesicles. We also found that hemichannels and TREK family channels-that recent studies proposed to mediate astrocytic glutamate release - are not involved in SIC generation. SICs are reduced by the volume-sensitive anion channel antagonists diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), quinine and fluoxetine, suggesting a possible contribution of these channels in SIC generation. Direct measurements of astrocytic glutamate release further confirm that hypotonicity-evoked gliotransmission is impaired following DIDS, quinine and fluoxetine while the exocytotic release of glutamate-that is proposed to mediate synaptic transmission modulation by astrocytes-remains unaffected. In conclusion, our data provide evidence that the release of glutamate generating SICs occurs independently on exocytotic Ca2+ -dependent glutamate release mechanism.
KEYWORDS: {{ getKeywords(articleDetailText.words) }}
Sample name | Organism | Experiment title | Sample type | Library instrument | Attributes | |||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
{{attr}} | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
{{ dataList.sampleTitle }} | {{ dataList.organism }} | {{ dataList.expermentTitle }} | {{ dataList.sampleType }} | {{ dataList.libraryInstrument }} | {{ showAttributeName(index,attr,dataList.attributes) }} |
{{ list.authorName }} {{ list.authorName }} |